Stephen Hawking and the Israel Boycott

Professor HawkingThere’s an old joke about the definition of chutzpa. A boy murders his parents and pleas to the judge: “Have pity on me – I’m an orphan!”

Sadly, that comic story can be applied this week to Stephen Hawking, the brilliant Cambridge physicist who announced he was pulling out of the “Facing Tomorrow” conference in Israel next month, “based on advice from Palestinian academics that he should respect the boycott” of Israel. For such a clever man, his recent actions are shockingly foolish and short-sighted.

Short-sighted because, given Israel’s central position in scientific and technological fields, to boycott the Jewish state would mean giving up on some of the most important advancements of recent years.

  • Stephen Hawking himself, who has suffered from motor neuron disease for most of his 71 years, communicates using a mechanical voice system run by the Intel Core i7 Processor developed by the Israeli division of Intel.
  • As a partical physicist, he is intimately involved in the most significant development in modern times: the discovery of the Higgs-Boson particle, found last year using Israel-developed particle detectors.
  • Last year, Hawking accepted a prestigious physics award worth $3 million – awarded by Yuri Milner, a major investor in Israeli high-tech.

Clearly, Prof. Hawking is not about to take out his Intel voice chip, return $3 million, and cease engaging in scientific debate. With so many areas of his life impacted and improved by Israeli dynamism, his refusal to visit the Jewish state comes across as a whole lotta chutzpa.

Double Standard

If Hawking wants to boycott a nation for perceived human rights outrages, he is targeting the wrong country.

In a week when the world’s newspapers were filled with gruesome descriptions of profound human rights violations, it’s ironic that Prof. Hawking would choose to target Israel for approbation:

  • Civil war is raging in Syria, with the Assad regime using chemical weapons against civilians
  • Nigeria is massacring Islamist opponents of the government
  • China is enforcing its brutal one-child policy through forced abortions
  • Saudi Arabia is executing political prisoners and homosexuals

Of course, Israel is not be above criticism, but to single it out for special treatment is to hold it to a biased double-standard that is required of no other country in the world. To single out Israel, a liberal democracy with an open press, transparent judiciary, universal suffrage, and enshrined equal rights for all – as a country not only to be criticized, but utterly avoided – is total chutzpa.

Dr. Hawking, whose academic research is world-class, must also realize the key to bettering the world lies in fostering communication, not in shutting it down. By turning his back on all of Israel, he’s sending a reactionary and hate-filled message at odds with the extensive academic collaboration that’s marked his entire career. Chutzpa!

Indeed, serious academics, such as Sari Nusseibeh, the Palestinian President of Al-Quds University, deplore academic boycotts. Dr. Nusseibeh has pioneered joint projects with Hebrew University in Jerusalem and Brandeis University near Boston.

Hawking’s cancellation was such an embarrassment to his employer, Cambridge University, that the school spokesman tried to claim it was due to “health reasons” and not as a boycott of Israel. The university was then forced to backtrack, after Hawking’s office made perfectly clear that the decision was due to the boycott.

Wrong Side of History

Amazingly, the conference that Hawking is boycotting is designed to promote the very sort of tolerant, open world for which he surely yearns.

Held under the auspices of Israeli President Shimon Peres, the annual Facing Tomorrow conference brings together a diverse group of 5,000 world leaders and intellectuals for discussions on an array of pressing world – including geopolitics, economics, environment and culture. Peres, a Nobel Prize laureate and Israel’s elder statesman, is using his considerable political capital to address some of the planet’s most pressing issues. To boycott this effort is not reasoned criticism but rather pure chutzpa – an attempt to destroy an Israeli initiative not on its merits, but simply because it originates in the Jewish state.

As a theoretical physicist, Hawking surely knows that his field was shaped by unsuccessful attempts to silence Jews in the past.

In the 1930s, Jewish scientists in Germany – including Albert Einstein – found themselves edged out of traditional academic fields and into burgeoning scientific areas such as particle physics. Einstein and Enrico Fermi (who left Europe to save his Jewish wife) came to the United States, and built much of the foundation of modern theoretical physics.

This latest boycott attempt to silence Jews has a long and infamous history. Hawking’s synergy with this movement to delegitimize the existence of the Jewish state is destined to prove on the wrong side of history.

Paul Adrien Maurice Dirac

Paul Dirac’s father was Charles Adrien Ladislas Dirac and his mother was Florence Hannah Holten. Charles Dirac was a Swiss citizen born in Monthey, Valais while his mother came from Cornwall in England.

Charles had been educated at the University of Geneva, then came to England in around 1888 and taught French in Bristol. There he met Florence, whose father had moved to Bristol as Master Mariner on a Bristol ship, when she was working in the library there.

Charles and Florence married in 1899 and they moved into a house in Bishopston, Bristol which they named Monthey after the town of Charles’s birth. By this time Charles was teaching French at the secondary school attached to the Merchant Venturers Technical College in Bristol.

Paul was one of three children, his older brother being Reginald Charles Felix Dirac and his younger sister being Beatrice Isabelle Marguerite Walla Dirac. Paul had a very strict family upbringing. His father insisted that only French be spoken at the dinner table and, as a result, Paul was the only one to eat with his father in the dining room. Paul’s father was so strict with his sons that both were alienated and Paul was brought up in a somewhat unhappy home.

The first school which Paul attended was Bishop Primary school and already in this school his exceptional ability in mathematics became clear to his teachers. When he was twelve years old he entered secondary school, attending the secondary school where his father taught which was part of the Merchant Venturers Technical College.

At about the time Paul entered the school World War I began and this had a beneficial effect for Paul since the older boys in the school left for military service and the younger boys had more access to the science laboratories and other facilities. Paul himself wrote about his school years in:

The Merchant Venturers was an excellent school for science and modern languages. There was no Latin or Greek, something of which I was rather glad, because I did not appreciate the value of old cultures. I consider myself very lucky in having been able to attend the school. … I was rushed through the lower forms, and was introduced at an especially early age to the basis of mathematics, physics and chemistry in the higher forms. In mathematics I was studying from books which mostly were ahead of the rest of the class. This rapid advancement was a great help to me in my latter career.

He completed his school education in 1918 and then studied electrical engineering at the University of Bristol. By this time the University had combined with the Merchant Venturers Technical College so Dirac remained in the same building as he had studied during his four years at secondary school.

Though mathematics was his favourite subject he chose to study an engineering course at university since he thought that the only possible career for a mathematician was school teaching and he certainly wanted to avoid that profession.

He obtained his degree in engineering in 1921 but following this, after an undistinguished summer job in an engineering works, he did not find a permanent job. By this time he was developing a real passion for mathematics but his attempts to study at Cambridge failed for rather strange reasons.

Taking the Cambridge scholarship examinations in June 1921 he was awarded a scholarship to study mathematics at St John’s College Cambridge but it did not provide enough to support him.

Additional support would have been expected from his local education authority, but he was refused support on the grounds that his father had not been a British citizen for long enough. Dirac was offered the chance to study mathematics at Bristol without paying fees and he did so being awarded first class honours in 1923. Following this he was awarded a grant to undertake research at Cambridge and he began his studies there in 1923.

Dirac had been hoping to have his research supervised by Ebenezer Cunningham, for by this time Dirac had become fascinated in the general theory of relativity and wanted to undertake research on this topic. Cunningham already had as many research students as he was prepared to take on and so Dirac was supervised by Ralph Fowler. The authors of write:

Fowler was then the leading theoretician in Cambridge, well versed in the quantum theory of atoms; his own research was mostly on statistical mechanics. He recognised in Dirac a student of unusual ability. Under his influence Dirac worked on some problems in statistical mechanics. Within six months of arriving in Cambridge he wrote two papers on these problems. No doubt Fowler aroused his interest in the quantum theory, and in May 1924 Dirac completed his first paper dealing with quantum problems. Four more papers were completed by November 1925.

Despite the obvious academic success Dirac enjoyed as a research student this was no easy time for him. His brother Reginald Dirac committed suicide during this period.

No reason for the suicide seems to be known but Dirac’s relations with his father, already strained, seemed almost to end completely after this which does suggest that Dirac felt that his father carried at least some responsibility. Already a person who had few friends, this personal tragedy had the effect of making him even more withdrawn.

Although he had already made an excellent start to his research career, even more impressive work was to follow. This was as a result of Dirac being given proofs of a paper by Heisenberg to read in the summer of 1925.

The significance of the algebraic properties of Heisenberg’s commutators struck Dirac when he was out for a walk in the country. He realised that Heisenberg’s uncertainty principle was a statement of the noncommutativity of the quantum mechanical observables. He realised the analogy with Poisson brackets in Hamiltonian mechanics. Higgs writes in:

This similarity provided the clue which led him to formulate for the first time a mathematically consistent general theory of quantum mechanics in correspondence with Hamiltonian mechanics.

The ideas were laid out in Dirac’s doctoral thesis Quantum mechanics for which he was awarded a Ph.D. in 1926. It is remarkable that Dirac had eleven papers in print before submitting his doctoral dissertation.

Following the award of the degree he went to Copenhagen to work with Niels Bohr, moving on to Göttingen in February 1927 where he interacted with Robert Oppenheimer, Max Born, James Franck and the Russian Igor Tamm. Accepting an invitation from Ehrenfest, he spent a few weeks in Leiden on his way back to Cambridge. He was elected a Fellow of St John’s College, Cambridge in 1927.

Dirac visited the Soviet Union in 1928. It was the first of many visits for he went again in 1929, 1930, 1932, 1933, 1935, 1936, 1937, 1957, 1965, and 1973. Also in 1928 he found a connection between relativity and quantum mechanics, his famous spin-1/2 Dirac equation.

In 1929 he made his first visit to the United States, lecturing at the Universities of Wisconsin and Michigan. After the visit, along with Heisenberg, he crossed the Pacific and lectured in Japan. He returned via the trans-Siberian railway.

In 1930 Dirac published The principles of Quantum Mechanics and for this work he was awarded the Nobel Prize for Physics in 1933. De Facio, reviewing, says of this book:-

Dirac was not influenced by the feeding frenzy in experimental phenomenology of the time. This has given Dirac’s book … a lasting quality that few works can match.

The authors of comment that the book:-

… reflects Dirac’s very characteristic approach: abstract but simple, always selecting the important points and arguing with unbeatable logic.

Also in 1930 Dirac was elected a Fellow of the Royal Society. This honour came on the first occasion that his name was put forward, in itself quite an unusual event which says much about the extremely high opinion that Dirac’s fellow scientists had of him.

Dirac was appointed Lucasian professor of mathematics at the University of Cambridge in 1932, a post he held for 37 years. In 1933 he published a pioneering paper on Lagrangian quantum mechanics which became the foundation on which Feynman later built his ideas of the path integral. In the same year Dirac received the Nobel prize for physics which he shared with Schrödinger.

It is an interesting comment on Dirac’s nature that his first thought was to turn down the prize on the grounds that he hated publicity. However when it was pointed out to him that he would receive far more publicity if he turned down the prize, he accepted it.

Another comment about this event is that Dirac was told that he could invite his parents to the award ceremony in Stockholm, but he chose to invite only his mother and not his father.

The academic year 1934-35 was important for Dirac both for personal and professional reasons. He visited the Institute for Advanced Study at Princeton and there he became friendly with Wigner.

While Dirac was there Wigner’s sister Margit, who lived in Budapest, visited her brother. This chance meeting led, in January 1937, to Dirac marrying Margit in London. Margit had been married before and had two children Judith and Gabriel Andrew from her first marriage.

Both children adopted the name Dirac and Gabriel Andrew Dirac went on the became a famous pure mathematician, particularly contributing to graph theory, becoming professor of pure mathematics at the University of Aarhus in Denmark.

In 1937, the same year that he married, Dirac published his first paper on large numbers and cosmological matters. We comment further on his ideas on cosmology below. He published his famous paper on classical electron theory, which included mass renormalisation and radiative reaction in 1938.

Dirac worked during World War II on uranium separation and nuclear weapons. In particular he acted as a consultant to a group in Birmingham working on atomic energy. This association led to Dirac being prevented by the British government from visiting the Soviet Union after the end of the war; he was not able to visit again until 1957.

We noted above that Dirac was elected a fellow of the Royal Society in 1930. He was awarded the Royal Society’s Royal Medal in 1939 and the Society awarded him their Copley Medal in 1952:-

… in recognition of his remarkable contributions to relativistic dynamics of a particle in quantum mechanics.

In 1969 Dirac retired from the Lucasian chair of mathematics at Cambridge and went with his family to Florida in the United States. He held visiting appointments at the University of Miami and at Florida State University. Then, in 1971, Dirac was appointed professor of physics at Florida State University where he continued his research.

In 1973 and 1975 Dirac lectured in the Physical Engineering Institute in Leningrad. In these lectures he spoke about the problems of cosmology or, to be more precise, to the problems of non-dimensional combinations of world constants.

Although Dirac made vastly important contributions to physics, it is important to realise that he was always motivated by principles of mathematical beauty. Dirac unified the theories of quantum mechanics and relativity theory, but he also is remembered for his outstanding work on the magnetic monopole, fundamental length, antimatter, the d-function, bra-kets, etc.

There is a standard folklore of Dirac stories, mostly revolving around Dirac saying exactly what he meant and no more. Once when someone, making polite conversation at dinner, commented that it was windy, Dirac left the table and went to the door, looked out, returned to the table and replied that indeed it was windy.

It has been said in jest that his spoken vocabulary consisted of “Yes”, “No”, and “I don’t know”. Certainly when Chandrasekhar was explaining his ideas to Dirac he continually interjected “yes” then explained to Chandrasekhar that “yes” did not mean that he agreed with what he was saying, only that he wished him to continue. He once said:-

I was taught at school never to start a sentence without knowing the end of it.

This may explain much about his conversation, and also about his beautifully written sentences in his books and papers.

Dirac received many honours for his work, some of which we have mentioned above. He refused to accept honorary degrees but he did accept honorary membership of academies and learned societies.

The list of these is long but among them are USSR Academy of Sciences (1931), Indian Academy of Sciences (1939), Chinese Physical Society (1943), Royal Irish Academy (1944), Royal Society of Edinburgh (1946), Institut de France (1946), National Institute of Sciences of India (1947), American Physical Society (1948), National Academy of Sciences (1949), National Academy of Arts and Sciences (1950), Accademia delle Scienze di Torino (1951), Academia das Ciencias de Lisboa (1953), Pontifical Academy of Sciences, Vatican City (1958), Accademia Nazionale dei Lincei, Rome (1960), Royal Danish Academy (1962), and Académie des Sciences Paris (1963). He was appointed to the Order of Merit in 1973.